Bayesian formulation of modern day signal processing problems has called for improved Markov chain Monte Carlo (MCMC) sampling algorithms for inference. The need for efficient sampling techniques has become indispensable for high dimensional distributions that often characterize many core signal processing problems, e.g., image denoising, sparse signal recovery, etc. A major issue in building effective sampling strategies, however, is the non-differentiability of the underlying posterior density. Such posteriors are popular in models designed to recover sparse signals. As a result, the use of efficient gradient-based MCMC sampling techniques becomes difficult. We circumvent this problem by proposing a Proximal Hamiltonian Monte Carlo (p-HMC) algorithm, which leverages elements from convex optimization like proximal mappings and Moreau-Yosida (MY) envelopes within Hamiltonian dynamics. Our method improves upon the current state of the art non-smooth Hamiltonian Monte Carlo as it achieves a relatively sharper approximation of the gradient of log posterior density and a computational burden of at most the current state-of-the-art. A chief contribution of this work is the theoretical analysis of p-HMC. We provide conditions for geometric ergodicity of the underlying HMC chain. On the practical front, we propose guidance on choosing the key p-HMC hyperparameter -- the regularization parameter in the MY-envelope. We demonstrate p-HMC's efficiency over other MCMC algorithms on benchmark problems of logistic regression and low-rank matrix estimation.
翻译:现代信号处理问题的贝叶斯建模对改进的马尔可夫链蒙特卡洛(MCMC)采样算法提出了更高要求。对于高维分布——这类分布常表征图像去噪、稀疏信号恢复等核心信号处理问题——高效采样技术已成为不可或缺的工具。然而,构建有效采样策略的主要障碍在于后验密度的不可微性,此类后验在稀疏信号恢复模型中尤为常见,导致难以应用高效的基于梯度的MCMC采样技术。为解决该问题,我们提出近端哈密顿蒙特卡洛(p-HMC)算法,该方法将凸优化中的近端映射和莫罗-吉田(MY)包络等要素融入哈密顿动力学体系。相较于当前最先进的非光滑哈密顿蒙特卡洛方法,本方法实现了对数后验密度梯度的相对更精确逼近,且计算复杂度至多与现有最优方法持平。本工作的核心贡献在于对p-HMC的理论分析:我们给出了底层HMC链几何遍历性的充分条件。在实践层面,我们针对p-HMC关键超参数——MY包络中的正则化参数——提出了选取指导原则。通过在逻辑回归和低秩矩阵估计等基准问题上的实验,我们验证了p-HMC相较于其他MCMC算法的高效性。