Existing gait recognition methods typically identify individuals based on the similarity between probe and gallery samples. However, these methods often neglect the fact that the gallery may not contain identities corresponding to the probes, leading to incorrect recognition.To identify Out-of-Gallery (OOG) gait queries, we propose an Evidence-based Match-status-Aware Gait Recognition (EMA-GR) framework. Inspired by Evidential Deep Learning (EDL), EMA-GR is designed to quantify the uncertainty associated with the match status of recognition. Thus, EMA-GR identifies whether the probe has a counterpart in the gallery. Specifically, we adopt an evidence collector to gather match status evidence from a recognition result pair and parameterize a Dirichlet distribution over the gathered evidence, following the Dempster-Shafer Theory of Evidence (DST). We measure the uncertainty and predict the match status of the recognition results, and thus determine whether the probe is an OOG query.To the best of our knowledge, our method is the first attempt to tackle OOG queries in gait recognition. Moreover, EMA-GR is agnostic against gait recognition methods and improves the robustness against OOG queries. Extensive experiments demonstrate that our method achieves state-of-the-art performance on datasets with OOG queries, and can also generalize well to other identity-retrieval tasks. Importantly, our method surpasses existing state-of-the-art methods by a substantial margin, achieving a 51.26% improvement when the OOG query rate is around 50% on OUMVLP.
翻译:暂无翻译