The efficient scheduling of multi-task jobs across multiprocessor systems has become increasingly critical with the rapid expansion of computational systems. This challenge, known as Multiprocessor Multitask Scheduling (MPMS), is essential for optimizing the performance and scalability of applications in fields such as cloud computing and deep learning. In this paper, we study the MPMS problem under both deterministic and stochastic models, where each job is composed of multiple tasks and can only be completed when all its tasks are finished. We introduce $\mathsf{NP}$-$\mathsf{SRPT}$, a non-preemptive variant of the Shortest Remaining Processing Time (SRPT) algorithm, designed to accommodate scenarios with non-preemptive tasks. Our algorithm achieves a competitive ratio of $\ln \alpha + \beta + 1$ for minimizing response time, where $\alpha$ represents the ratio of the largest to the smallest job workload, and $\beta$ captures the ratio of the largest non-preemptive task workload to the smallest job workload. We further establish that this competitive ratio is order-optimal when the number of processors is fixed. For stochastic systems modeled as M/G/N queues, where job arrivals follow a Poisson process and task workloads are drawn from a general distribution, we prove that $\mathsf{NP}$-$\mathsf{SRPT}$ achieves asymptotically optimal mean response time as the traffic intensity $\rho$ approaches $1$, assuming the task size distribution has finite support. Moreover, the asymptotic optimality extends to cases with infinite task size distributions under mild probabilistic assumptions, including the standard M/M/N model. Experimental results validate the effectiveness of $\mathsf{NP}$-$\mathsf{SRPT}$, demonstrating its asymptotic optimality in both theoretical and practical settings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员