In this paper, we consider a nonlinear PDE system governed by a parabolic heat equation coupled in a nonlinear way with a hyperbolic momentum equation describing the behavior of a displacement field coupled with a nonlinear elliptic equation based on an internal damage variable. We present a numerical scheme based on a Galerkin finite element method (FEM) for the space discretization of the time-dependent nonlinear PDE system and an implicit finite difference method (FDM) to discretize in the direction of the time variable. Moreover, we present a priori estimates for the exact and discrete solutions for the pointwise-in-time $L^2$-norm. Based on the a priori estimates, we rigorously prove the convergence of the solutions of the fully discretized system to the exact solutions. Denoting the properties of the internal parameters, we find the order of convergence concerning the discretization parameters.
翻译:在本文中,我们考虑一个非线性PDE系统,它由抛光热方程式管理,以非线性方式结合一个双线性动量方程式,描述迁移场的行为,加上基于内部损坏变量的非线性椭圆方程式。我们提出了一个基于Galerkin有限元素法(FEM)的数字方案,用于时间依赖非线性PDE系统的空间离散,以及一种内隐性有限差异法(FDM),以向时间变量的方向分解。此外,我们提出了一个先验估计,即时偏移场的精确和离散解决方案($L%2$-norm)。根据先验估计,我们严格证明完全离散的系统解决方案与确切解决方案的趋同。我们注意到内部参数的特性,发现离散化参数的趋同顺序。