In this paper, we consider a nonlinear PDE system governed by a parabolic heat equation coupled in a nonlinear way with a hyperbolic momentum equation describing the behavior of a displacement field coupled with a nonlinear elliptic equation based on an internal damage variable. We present a numerical scheme based on a Galerkin finite element method (FEM) for the space discretization of the time-dependent nonlinear PDE system and an implicit finite difference method (FDM) to discretize in the direction of the time variable. Moreover, we present a priori estimates for the exact and discrete solutions for the pointwise-in-time $L^2$-norm. Based on the a priori estimates, we rigorously prove the convergence of the solutions of the fully discretized system to the exact solutions. Denoting the properties of the internal parameters, we find the order of convergence concerning the discretization parameters.


翻译:在本文中,我们考虑一个非线性PDE系统,它由抛光热方程式管理,以非线性方式结合一个双线性动量方程式,描述迁移场的行为,加上基于内部损坏变量的非线性椭圆方程式。我们提出了一个基于Galerkin有限元素法(FEM)的数字方案,用于时间依赖非线性PDE系统的空间离散,以及一种内隐性有限差异法(FDM),以向时间变量的方向分解。此外,我们提出了一个先验估计,即时偏移场的精确和离散解决方案($L%2$-norm)。根据先验估计,我们严格证明完全离散的系统解决方案与确切解决方案的趋同。我们注意到内部参数的特性,发现离散化参数的趋同顺序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员