In a series of two articles, we propose a comprehensive mathematical framework for Coupled-Cluster-type methods. In this second part, we analyze the nonlinear equations of the single-reference Coupled-Cluster method using topological degree theory. We establish existence results and qualitative information about the solutions of these equations that also sheds light on the numerically observed behavior. In particular, we compute the topological index of the zeros of the single-reference Coupled-Cluster mapping. For the truncated Coupled-Cluster method, we derive an energy error bound for approximate eigenstates of the Schrodinger equation.
翻译:在两篇文章的系列中,我们提出了一个全面的耦合簇类型方法的数学框架。 在本文的第二部分中,我们使用拓扑度理论分析单参考耦合簇方法的非线性方程。 我们建立了解的存在结果,并提供了关于这些方程的解的定性信息,这也揭示了被观察到的数值行为。 特别地,我们计算了单参考耦合簇映射的零点的拓扑指数。 对于截断的耦合簇方法,我们为薛定谔方程的近似本征态导出能量误差界。