Time complexity in rewriting is naturally understood as the number of steps needed to reduce terms to normal forms. Establishing complexity bounds to this measure is a well-known problem in the rewriting community. A vast majority of techniques to find such bounds consist of modifying termination proofs in order to recover complexity information. This has been done for instance with semantic interpretations, recursive path orders, and dependency pairs. In this paper, we follow the same program by tailoring tuple interpretations to deal with innermost complexity analysis. A tuple interpretation interprets terms as tuples holding upper bounds to the cost of reduction and size of normal forms. In contrast with the full rewriting setting, the strongly monotonic requirement for cost components is dropped when reductions are innermost. This weakened requirement on cost tuples allows us to prove the innermost version of the compatibility result: if all rules in a term rewriting system can be strictly oriented, then the innermost rewrite relation is well-founded. We establish the necessary conditions for which tuple interpretations guarantee polynomial bounds to the runtime of compatible systems and describe a search procedure for such interpretations.


翻译:摘要: 在重写中,时间复杂度自然地被理解为将术语约减到标准形式所需的步骤数。确立此措施的复杂性限制是重写社区中已知的问题。发现此类限制的绝大多数技术都包括修改终止证明以恢复复杂性信息。这已经在语义解释、递归路径序和依赖对等方面完成。在本文中,我们按照相同的方案,通过定制元组解释来处理最内部的复杂性分析。元组解释将术语解释为保持减少成本和正常形式大小的上限的元组。与完整的重写环境不同,当减少是最内层的时,强单调成本组件要求会被放弃。这个减少对成本元组的弱化要求使我们能够证明兼容系统最内部的重写关系是良基础的。我们建立了元组解释保证兼容系统的运行时多项式限制的必要条件,并描述了这种解释的搜索程序。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
38+阅读 · 2021年8月31日
Anomalous Instance Detection in Deep Learning: A Survey
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员