We study the computational complexity of two hard problems on determinantal point processes (DPPs). One is maximum a posteriori (MAP) inference, i.e., to find a principal submatrix having the maximum determinant. The other is probabilistic inference on exponentiated DPPs (E-DPPs), which can sharpen or weaken the diversity preference of DPPs with an exponent parameter $p$. We prove the following complexity-theoretic hardness results that explain the difficulty in approximating MAP inference and the normalizing constant for E-DPPs. 1. Unconstrained MAP inference for an $n \times n$ matrix is NP-hard to approximate within a factor of $2^{\beta n}$, where $\beta = 10^{-10^{13}} $. This result improves upon a $(\frac{9}{8}-\epsilon)$-factor inapproximability given by Kulesza and Taskar (2012). 2. Log-determinant maximization is NP-hard to approximate within a factor of $\frac{5}{4}$ for the unconstrained case and within a factor of $1+10^{-10^{13}}$ for the size-constrained monotone case. 3. The normalizing constant for E-DPPs of any (fixed) constant exponent $p \geq \beta^{-1} = 10^{10^{13}}$ is NP-hard to approximate within a factor of $2^{\beta pn}$. This gives a(nother) negative answer to open questions posed by Kulesza and Taskar (2012); Ohsaka and Matsuoka (2020).
翻译:我们研究了决定点进程(DPPs)中两个硬性问题的计算复杂性。 一个是后端(MAP)推论和正常化常数的难度, 也就是说, 找到一个具有最大决定因素的主要子矩阵。 另一个是推算式DPP(E- DPP) 的概率推论, 这可以使DPP(E- DPP) 的多样性偏好更加精确或削弱, 并带有一个Expentent 参数 $p美元。 我们证明了以下复杂的理论硬性结果, 解释了接近MAP(MAP) 推论和 EDPPPs 的难度。 1. 美元( timen) 时间(n) 的未受限制的子矩阵推论。 美元=Betata (E- DP) = 10- 10 美元(美元) 。 这可以使Kulesza和Tattal( 2012) 美元) 的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性的硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性硬性