Data organization via forming local regions is an integral part of deep learning networks that process 3D point clouds in a hierarchical manner. At each level, the point cloud is sampled to extract representative points and these points are used to be centers of local regions. The organization of local regions is of considerable importance since it determines the location and size of the receptive field at a particular layer of feature aggregation. In this paper, we present two local region-learning modules: Center Shift Module to infer the appropriate shift for each center point, and Radius Update Module to alter the radius of each local region. The parameters of the modules are learned through optimizing the loss associated with the particular task within an end-to-end network. We present alternatives for these modules through various ways of modeling the interactions of the features and locations of 3D points in the point cloud. We integrated both modules independently and together to the PointNet++ object classification architecture, and demonstrated that the modules contributed to a significant increase in classification accuracy for the ScanObjectNN data set.
翻译:----
数据的局部区域组织是处理3D点云的深度学习网络中的重要部分,其以分层方式进行处理。在每个层级上,采样点云以提取代表性点,并使用这些点作为局部区域的中心。局部区域的组织非常重要,因为它决定了特征聚合在特定层的接受域的位置和大小。本文介绍了两个局部区域学习模块:中心偏移模块用于推断每个中心点的适当偏移值,半径更新模块用于改变每个局部区域的半径。模块参数通过在端到端网络中优化特定任务相关的损失来学习。我们通过各种方式对特征及3D点的位置相互作用建模,为这些模块提供了替代方案。我们独立及相互整合这两个模块到PointNet ++物体分类架构中,并证明了这些模块对ScanObjectNN数据集的分类准确性有显著提高。