Graph neural networks (GNNs) have achieved state-of-the-art performance in modeling graphs. Despite its great success, as with many other models, GNNs have the risk to inherit the bias from the training data. In addition, the bias of GNN can be magnified by the graph structures and message-passing mechanism of GNNs. The risk of discrimination limits the adoption of GNNs in sensitive domains such as credit score estimation. Though extensive studies of fair classification have been conducted on i.i.d data, methods to address the problem of discrimination on non-i.i.d data are rather limited. Furthermore, the practical scenario of sparse annotations in sensitive attributes is rarely considered in existing works. Therefore, we study the novel and important problem of learning fair GNNs with limited sensitive information. We propose a novel framework called FairGNN, which is able to reduce the bias of GNNs and maintain high node classification accuracy by leveraging graph structured data and sensitive information. Theoretical analysis is conducted to show that FairGNN can ensure fairness under mild conditions given limited nodes with known sensitive attributes. Experiments on real-world datasets demonstrated the effectiveness of the proposed framework in eliminating discrimination while maintaining high node classification accuracy.


翻译:尽管与许多其他模型一样,GNN极有可能继承培训数据中的偏差。此外,GNN的偏差可以通过GNN的图形结构和信息传递机制放大。歧视风险限制了GNN在信用评分等敏感领域的采用GNN。虽然对i.d数据进行了广泛的公平分类研究,但解决非i.d数据歧视问题的方法相当有限。此外,在现有工作中很少考虑敏感属性中少见说明的实际情景。因此,我们研究以有限敏感信息学习公平GNN的新而重要的问题。我们提出了一个名为FairGNN的新框架,它能够减少GNN的偏差,并通过利用图表结构化数据和敏感信息保持高度的无节点分类准确性。进行了理论分析,以表明FairGNNN能够确保非i.d数据的公平性,因为已知敏感属性只有有限的节点。我们研究了在现实世界数据分类中保持高的准确性,同时展示了拟议的框架的准确性。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月12日
Arxiv
38+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月12日
相关论文
Arxiv
38+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Top
微信扫码咨询专知VIP会员