This work presents mixed variational flows (MixFlows), a new variational family that consists of a mixture of repeated applications of a map to an initial reference distribution. First, we provide efficient algorithms for i.i.d. sampling, density evaluation, and unbiased ELBO estimation. We then show that MixFlows have MCMC-like convergence guarantees when the flow map is ergodic and measure-preserving, and provide bounds on the accumulation of error for practical implementations where the flow map is approximated. Finally, we develop an implementation of MixFlows based on uncorrected discretized Hamiltonian dynamics combined with deterministic momentum refreshment. Simulated and real data experiments show that MixFlows can provide more reliable posterior approximations than several black-box normalizing flows, as well as samples of comparable quality to those obtained from state-of-the-art MCMC methods.
翻译:这项工作呈现了混合变式流( MixFlows ), 这是一个新的变式家族, 由地图对初始参考分布的反复应用混合组成。 首先, 我们为 i. d. 抽样、 密度评估和无偏向ELBO 估计提供有效的算法。 然后, 我们显示 MixFlows 在流图是 ergodic 和 度量保留时, 具有类似于 MCMC 的聚合保证, 并为流图的近似位置的实际实施提供了错误积累的界限 。 最后, 我们开发了混效花, 其基础是未经校正的离散的汉密尔顿动态, 以及确定性动力更新。 模拟和真实的数据实验显示, MixFlows 能够提供比几个黑箱正常流更可靠的远近, 以及质量与从最先进的MC 方法中获得的相似的样本 。