We consider the cross-market recommendation (CMR) task, which involves recommendation in a low-resource target market using data from a richer, auxiliary source market. Prior work in CMR utilised meta-learning to improve recommendation performance in target markets; meta-learning however can be complex and resource intensive. In this paper, we propose market-aware (MA) models, which directly model a market via market embeddings instead of meta-learning across markets. These embeddings transform item representations into market-specific representations. Our experiments highlight the effectiveness and efficiency of MA models both in a pairwise setting with a single target-source market, as well as a global model trained on all markets in unison. In the former pairwise setting, MA models on average outperform market-unaware models in 85% of cases on nDCG@10, while being time-efficient - compared to meta-learning models, MA models require only 15% of the training time. In the global setting, MA models outperform market-unaware models consistently for some markets, while outperforming meta-learning-based methods for all but one market. We conclude that MA models are an efficient and effective alternative to meta-learning, especially in the global setting.
翻译:我们考虑跨市场建议(CMR)的任务,它涉及利用来自较富裕的辅助来源市场的数据在低资源目标市场中提出建议,这涉及利用来自较富裕的辅助来源市场的数据在低资源目标市场中提出建议。CMR以前的工作利用元学习来改进目标市场的建议绩效;但元学习可能很复杂,资源密集。在本文件中,我们提出市场意识(MA)模式,这些模式通过市场嵌入而不是跨市场的元学习来直接模拟市场。这些嵌入将项目代表制转化为市场特定代表制。我们的实验强调MA模型的效力和效率,既在一个单一目标源市场对齐的配对环境中,也有一个在所有市场上都受过训练的全球模型。在前对齐的设置中,在 nDCG@10上85%的案例的平均超型市场软件模型中,MA模型虽然具有时间效率,但与元学习模式相比,MA模型只需要15%的培训时间。在全球设置中,MA模型优于某些市场一致的市场,同时超越基于元学习的方法。我们的结论是,特别是在一个市场中,MA模型是一种高效和有效的替代的替代方法。