Privacy-preserving deep neural network (DNN) inference is a necessity in different regulated industries such as healthcare, finance and retail. Recently, homomorphic encryption (HE) has been used as a method to enable analytics while addressing privacy concerns. HE enables secure predictions over encrypted data. However, there are several challenges related to the use of HE, including DNN size limitations and the lack of support for some operation types. Most notably, the commonly used ReLU activation is not supported under some HE schemes. We propose a structured methodology to replace ReLU with a quadratic polynomial activation. To address the accuracy degradation issue, we use a pre-trained model that trains another HE-friendly model, using techniques such as trainable activation functions and knowledge distillation. We demonstrate our methodology on the AlexNet architecture, using the chest X-Ray and CT datasets for COVID-19 detection. Experiments using our approach reduced the gap between the F1 score and accuracy of the models trained with ReLU and the HE-friendly model to within a mere 0.32-5.3 percent degradation. We also demonstrate our methodology using the SqueezeNet architecture, for which we observed 7 percent accuracy and F1 improvements over training similar networks with other HE-friendly training methods.
翻译:在医疗保健、金融和零售等不同监管行业,必须进行隐私保护深度神经网络(DNN)的推断。最近,使用同质加密(HE)作为在解决隐私问题的同时进行分析的一种方法。他能够对加密数据进行安全预测。然而,在使用HE方面存在若干挑战,包括DNN尺寸限制和某些操作类型缺乏支持。最明显的是,一些HE计划不支持常用的RELU激活功能。我们提出了一个结构化方法,用一种四面形多元海洋激活取代ReLU。为了解决准确性降解问题,我们使用了一种预先培训的模式,用可训练的激活功能和知识蒸馏等技术来培训另一个HE友好模型。我们展示了我们在AlexNet结构上采用的方法,使用胸部X光和CT数据集进行COVID-19检测。我们的方法实验减少了在RELU和HE友好型模型的F1分数和精确度差差,在仅仅0.32-5.3%的降解范围内。我们用一种预先培训模型来培训另一个HEWENet的精度。我们还用类似的方法展示了我们所观测到的SEWENet结构的精度。