The processing of sensitive user data using deep learning models is an area that has gained recent traction. Existing work has leveraged homomorphic encryption (HE) schemes to enable computation on encrypted data. An early work was CryptoNets, which takes 250 seconds for one MNIST inference. The main limitation of such approaches is that of the expensive FFT-like operations required to perform operations on HE-encrypted ciphertext. Others have proposed the use of model pruning and efficient data representations to reduce the number of HE operations required. We focus on improving upon existing work by proposing changes to the representations of intermediate tensors during CNN inference. We construct and evaluate private CNNs on the MNIST and CIFAR-10 datasets, and achieve over a two-fold reduction in the number of operations used for inferences of the CryptoNets architecture.
翻译:利用深层学习模型处理敏感的用户数据是一个最近才得到推动的领域; 现有工作利用了同质加密(HE)办法,以便能够计算加密数据; 早期工作是加密网络,需要250秒的时间进行一个MNIST推理; 这种方法的主要局限是执行HE加密密码操作所需的昂贵的FFFT类操作; 其他人建议使用模型的剪接和高效的数据表述,以减少需要的HE操作数量; 我们注重改进现有工作,在CNN推断期间提议改变中间高压器的表示方式; 我们建造和评估关于MNIST和CIFAR-10数据集的私人CNNS, 并在两个方面将用于计算CryptoNet结构推断的操作数目减少两倍以上。