Substantial scholarship has estimated the susceptibility of jobs to automation, but little has examined how job contents evolve in the information age as new technologies substitute for tasks, shifting required skills rather than eliminating entire jobs. Here we explore the patterns and consequences of changes in occupational skill contents and characterize occupations and workers subject to the greatest re-skilling pressure. Recent research suggests that high-skilled STEM and technology-intensive occupations have experienced the highest rates of skill content change. Analyzing 727 occupations across 167 million job posts covering the near-universe of the U.S. online labor market between 2010 and 2018, we find that when skill distance is accounted for, re-skilling pressure is much higher for low-skilled occupations, no matter how "low-skill: is defined, either by skill number, pay level, or education degree. We investigate the implications of uneven occupational skill change on workers and find that those from large labor markets and large employers experienced less change, while non-white males in low-skill jobs are the most demographically vulnerable. We conclude by discussing the broad potential of our skill embedding model, which learns skill proximity from skill co-presence across job posts and represents it as distance in the high-dimensional space of complex human capital that corresponds with skilling costs for workers. This model offers a fine-grained measure of the extent to which jobs evolve, and also indicates in what direction job are evolving, as illustrated by the decline in demand for human-interface skills and the rise for those at the machine-interface.


翻译:高技能STEM和技术密集型职业经历了最高技能含量变化,但很少研究信息时代的工作内容如何演变,因为新技术取代了任务,转移了所需技能,而不是消除了全部工作。在这里,我们探讨职业技能内容变化的模式和后果,并区分了面临最大再技能压力的职业和工人。最近的研究表明,高技能STEM和技术密集型职业在技能含量变化中经历了最高的比例变化。分析了2010年至2018年美国近乎单一的在线劳动力市场中1.67亿个职业岗位的727个职业,但我们发现,当计算技能距离时,低技能职业的再技能压力要高得多,不管“低技能:低技能:以技能数量、工资水平或教育程度界定了低技能内容和工人的特点。我们调查了职业技能变化不平衡对工人的影响,发现大型劳动力市场和大雇主对技能含量变化较少,而从事低技能工作的非白人男性在人口结构上最为脆弱。我们通过讨论我们的技能嵌入模型的广泛潜力,即从技能组合中学习技能接近技能,低技能压力的压力要高得多,无论技能水平如何界定低技能水平、高技能水平、高技能水平、高技能水平、高水平的跨职业向高水平显示,这代表了人类技能向高水平的工的演变趋势,表明,从高水平的演变是人类工的演变趋势的演变趋势。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月27日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
0+阅读 · 2022年10月25日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员