We propose a new model that estimates uncertainty in a single forward pass and works on both classification and regression problems. Our approach combines a bi-Lipschitz feature extractor with an inducing point approximate Gaussian process, offering robust and principled uncertainty estimation. This can be seen as a refinement of Deep Kernel Learning (DKL), with our changes allowing DKL to match softmax neural networks accuracy. Our method overcomes the limitations of previous work addressing deterministic uncertainty quantification, such as the dependence of uncertainty on ad hoc hyper-parameters. Our method matches SotA accuracy, 96.2% on CIFAR-10, while maintaining the speed of softmax models, and provides uncertainty estimates that outperform previous single forward pass uncertainty models. Finally, we demonstrate our method on a recently introduced benchmark for uncertainty in regression: treatment deferral in causal models for personalized medicine.
翻译:我们提出了一个新的模型,在单一远端传票中估计不确定性,并同时研究分类和回归问题。我们的方法将双利普西茨特征提取器与诱导点近似高山进程结合起来,提供了稳健和有原则的不确定性估计。这可以被视为深内核学习(DKL)的改进,让我们的修改使得DKL能够匹配软体神经网络的准确性。我们的方法克服了以往关于确定性不确定性量化的工作的局限性,例如不确定性对临时超参数的依赖性。我们的方法与索塔精度(SotA)匹配,96.2%在CIFAR-10上,同时保持软式模型的速度,并提供比前一个单一远端不确定模型的不确定性估计数。最后,我们展示了我们最近采用的关于回归不确定性基准的方法:个人化医学因果模型的延迟处理。