This paper studies the multi-agent resource allocation problem in vehicular networks using non-orthogonal multiple access (NOMA) and network slicing. To ensure heterogeneous service requirements for different vehicles, we propose a network slicing architecture. We focus on a non-cellular network scenario where vehicles communicate by the broadcast approach via the direct device-to-device interface. In such a vehicular network, resource allocation among vehicles is very difficult, mainly due to (i) the rapid variation of wireless channels among highly mobile vehicles and (ii) the lack of a central coordination point. Thus, the possibility of acquiring instantaneous channel state information to perform centralized resource allocation is precluded. The resource allocation problem considered is therefore very complex. It includes not only the usual spectrum and power allocation, but also coverage selection (which target vehicles to broadcast to) and packet selection (which network slice to use). This problem must be solved jointly since selected packets can be overlaid using NOMA and therefore spectrum and power must be carefully allocated for better vehicle coverage. To do so, we provide a optimization approach and study the NP-hardness of the problem. Then, we model the problem using multi-agent Markov decision process. Finally, we use a deep reinforcement learning (DRL) approach to solve the problem. The proposed DRL algorithm is practical because it can be implemented in an online and distributed manner. We show that our approach is robust and efficient when faced with different variations of the network parameters and compared to centralized benchmarks.


翻译:本文研究使用非垂直多存取(NOMA)和网络切片的车辆网络的多试剂资源分配问题。 为确保不同车辆的不同服务要求,我们提议了一个网络切片结构。我们侧重于非细胞网络情景,即车辆通过直接设备对设备对设备接口的广播方式进行通信。在这样的车辆网络中,车辆之间的资源分配非常困难,主要原因是:(一)高机动车辆之间无线频道的迅速变化,以及(二)缺乏中央协调点。因此,无法获取即时频道状态信息以实施集中资源分配参数。因此,考虑的资源分配问题非常复杂。它不仅包括通常的频谱和电力分配,还包括覆盖选择(以广播为对象的车辆为对象)和包选择(将使用网络切片)。 这一问题必须共同解决,因为选择的包可以用NOMA过宽,因此频谱和电力必须仔细分配,以便更好的车辆覆盖。为了做到这一点,我们提供了最优化的方法,并研究NP- 集中分配资源配置参数的可能性。因此,所考虑的资源分配问题非常复杂。 不仅包括通常的频谱和网络配置,我们后来采用多路路路段的模型,因为我们学习了多路路的问题。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员