The growing proliferation of pretrained generative models has made it infeasible for a user to be fully cognizant of every model in existence. To address this need, we introduce the task of content-based model search: given a query and a large set of generative models, find the models that best match the query. Because each generative model produces a distribution of images, we formulate the search problem as an optimization to maximize the probability of generating a query match given a model. We develop approximations to make this problem tractable when the query is an image, a sketch, a text description, another generative model, or a combination of the above. We benchmark our method in both accuracy and speed over a set of generative models. We demonstrate that our model search retrieves suitable models for image editing and reconstruction, few-shot transfer learning, and latent space interpolation. Finally, we deploy our search algorithm to our online generative model-sharing platform at https://modelverse.cs.cmu.edu.
翻译:未经培训的基因模型的日益扩散使得用户无法充分认识现有的每一种模型。为了满足这一需要,我们引入基于内容的模式搜索任务:给一个查询和一大批基因模型,找到最适合查询的模型。由于每个基因模型都产生图像的分布,我们将搜索问题设计成一个优化的搜索问题,以最大限度地增加产生查询匹配的概率,给一个模型。我们开发了近似,以便在查询是图像、草图、文本描述、另一个基因模型或以上各种模型的组合时,使这一问题能够处理。我们以精确和速度衡量我们的方法,比一套基因模型的精确和速度。我们证明,我们的模型搜索找到了适合图像编辑和重建、几发传输学习和潜在空间内插的模型。最后,我们把我们的搜索算法应用到我们的在线基因模型共享平台 https://modelvert.cs.cmu.edu.edu。