To characterize the complex higher-order interactions among variables within a system, this study introduces a novel framework, termed System Information Decomposition (SID), aimed at decomposing the information entropy of variables into information atoms based on their interrelations. Diverging from the established Partial Information Decomposition (PID) framework, which predominantly concentrates on the directional interactions stemming from an array of source variables to a single target variable, SID adopts a holistic approach, scrutinizing the interactions across all variables within the system. Specifically, we proved all the information atoms are symmetric, which means the disentanglement of unique, redundant, and synergistic information from any specific target variable. Hence, our proposed SID framework can capture the symmetric pairwise and higher-order relationships among variables. This advance positions SID as a promising framework with the potential to foster a deeper understanding of higher-order relationships within complex systems across disciplines.
翻译:暂无翻译