Enterprise industrial networks face threats that risk data and operations. However, designing efficient threat detection system is challenging due to data scarcity, especially where privacy is a concern. The complexity of enterprise industrial network data adds to this challenge, causing high false positives and interpretation issues. Towards this, we use IS computational design science paradigm to develop a two-stage cyber threat detection system for enterprise-level IS that are both secure and capable of adapting to evolving technological and business environments. The first stage generates synthetic industrial network data using a modified generative adversarial network. The second stage develops a novel bidirectional gated recurrent unit and a modified attention mechanism for effective threat detection. We also use shapley additive explanations and a decision tree technique for enhancing interpretability. Our analysis on two public datasets shows the frameworks high precision in threat detection and offers practical cybersecurity solutions and methodological advancements.
翻译:暂无翻译