We perform a set of experiments to demonstrate that images generated using a Generative Adversarial Network can be modified using 'semiotics.' We show that just as physical attributes such as the hue and saturation of an image can be modified, so too can its non-physical, abstract properties using our method. For example, the design of a flight attendant's uniform may be modified to look more 'alert,' less 'austere,' or more 'practical.' The form of a house can be modified to appear more 'futuristic,' a car more 'friendly' a pair of sneakers, 'evil.' Our method uncovers latent visual iconography associated with the semiotic property of interest, enabling a process of visual form-finding using abstract concepts. Our approach is iterative and allows control over the degree of attribute presence and can be used to aid the design process to yield emergent visual concepts.
翻译:我们执行了一系列实验,证明使用生成对抗网络生成的图像可以使用“符号学”进行修改。我们展示了与图像的色调和饱和度等物理属性可以被修改类似,非物理、抽象属性也可以使用我们的方法进行修改。例如,空中小姐制服的设计可以被修改为更“警觉”,更“严肃”,或者更“实用”。房子的形式可以被修改为更“未来主义”,汽车可以看起来更“友好”,一双运动鞋可以看起来更“邪恶”。我们的方法揭示了与所需符号属性相关的潜在视觉图像学,从而使得使用抽象概念进行视觉形态发掘的过程成为可能。我们的方法是迭代的,并且允许控制属性存在的程度,可用于辅助设计过程,产生新兴的视觉概念。