In this article, we construct semiparametrically efficient estimators of linear functionals of a probability measure in the presence of side information using an easy empirical likelihood approach. We use estimated constraint functions and allow the number of constraints to grow with the sample size. Considered are three cases of information which can be characterized by infinitely many constraints: (1) the marginal distributions are known, (2) the marginals are unknown but identical, and (3) distributional symmetry. An improved spatial depth function is defined and its asymptotic properties are studied. Simulation results on efficiency gain are reported.


翻译:在本条中,我们使用简单的经验概率方法,在有附带信息的情况下,对概率计量的线性功能进行半对称高效的估算;我们使用估计约束功能,并允许随着抽样规模的增加而增加限制数量;我们认为,有三个信息案例具有无限的局限性:(1) 边际分布为人所知,(2) 边际分布为未知但相同,(3) 分布对称,界定了改进的空间深度功能,并研究了其无症状特性;报告了效率增益的模拟结果。</s>

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
66+阅读 · 2021年6月18日
Arxiv
12+阅读 · 2021年3月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
66+阅读 · 2021年6月18日
Arxiv
12+阅读 · 2021年3月24日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员