Probabilistic variants of Model Order Reduction (MOR) methods have recently emerged for improving stability and computational performance of classical approaches. In this paper, we propose a probabilistic Reduced Basis Method (RBM) for the approximation of a family of parameter-dependent functions. It relies on a probabilistic greedy algorithm with an error indicator that can be written as an expectation of some parameter-dependent random variable. Practical algorithms relying on Monte Carlo estimates of this error indicator are discussed. In particular, when using Probably Approximately Correct (PAC) bandit algorithm, the resulting procedure is proven to be a weak greedy algorithm with high probability. Intended applications concern the approximation of a parameter-dependent family of functions for which we only have access to (noisy) pointwise evaluations. As a particular application, we consider the approximation of solution manifolds of linear parameter-dependent partial differential equations with a probabilistic interpretation through the Feynman-Kac formula.


翻译:基于概率的参数依赖问题简化基础方法 研究论文摘要: 本文提出了一种基于概率的简化基础方法,用于逼近一系列参数依赖函数。这种方法依赖于一种带有误差指示器的概率贪心算法,可以被写成某个参数依赖型随机变量的期望值。我们讨论了基于蒙特卡罗方法的实用算法,用于估算这种误差指示器。特别地,当使用可以被证明具有高概率弱贪心算法的概率近似正确(Probably Approximately Correct, PAC)半臂老虎机算法时,得到的结果是一个弱贪心算法。预期的应用包括逼近一个参数依赖的函数族,我们只能够访问(带有噪声的)逐点评估结果。一个特殊的应用是通过费曼-卡克公式的概率解释方式,逼近参数依赖型线性偏微分方程的解流形。

0
下载
关闭预览

相关内容

贪婪算法是一种算法范式,它遵循问题求解的启发式方法,即在每个阶段做出局部最优选择,以期寻求全局最优。 在许多问题中,贪婪策略通常不会产生最优解,但是贪婪的启发式方法可能会产生局部最优解,该局部最优解在合理的时间内近似于全局最优解。 例如,针对旅行商问题的贪婪策略(具有很高的计算复杂性)如下启发式:“在每个阶段,访问最接近当前城市的未访问城市”。 这种启发式方法无需找到最佳解决方案,而是以合理数量的步骤终止; 寻找最佳解决方案通常需要不合理的许多步骤。 在数学优化中,贪婪算法可解决具有拟阵特性的组合问题
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员