In this work we apply the "deviation maximization", a new column selection strategy, to the Lawson-Hanson algorithm for the solution of NonNegative Least Squares (NNLS), devising a new algorithm we call Lawson-Hanson with Deviation Maximization (LHDM). This algorithm allows to exploit BLAS-3 operations, leading to higher performances. We show the finite convergence of this algorithm and explore the sparse recovery ability of LHDM. The results are presented with an extensive campaign of experiments, where we compare its performance against several $\ell_1$-minimization solvers. An implementation of the proposed algorithm is available on a public repository.
翻译:在这项工作中,我们将“减缓最大化”这一新的专栏选择战略应用到劳森-汉森算法(Lawson-Hanson算法),用于解决非净性最低广场(NNLS),设计了一种我们称为劳森-汉森算法(LHDM)的新算法(LHDM)。这种算法允许利用BLAS-3的操作,导致更高的性能。我们展示了这一算法的有限趋同,并探索了LHDM的微弱恢复能力。结果通过广泛的实验活动展示了结果,我们将其性能与数个$@ell_1$-minminim化解算法的解算法进行比较。在公共储存库中可以找到实施拟议的算法。