For compact self-adjoint operators in Hilbert spaces, two algorithms are proposed to provide fully computable a posteriori error estimate for eigenfunction approximation. Both algorithms apply well to the case of tight clusters and multiple eigenvalues, under the settings of target eigenvalue problems. Algorithm I is based on the Rayleigh quotient and the min-max principle that characterizes the eigenvalue problems. The formula for the error estimate provided by Algorithm I is easy to compute and applies to problems with limited information of Rayleigh quotients. Algorithm II, as an extension of the Davis--Kahan method, takes advantage of the dual formulation of differential operators along with the Prager--Synge technique and provides greatly improved accuracy of the estimate, especially for the finite element approximations of eigenfunctions. Numerical examples of eigenvalue problems of matrices and the Laplace operators over convex and non-convex domains illustrate the efficiency of the proposed algorithms.
翻译:对于Hilbert空间的紧凑自合操作者,建议采用两种算法,以充分计算精巧近效的事后误差估计。两种算法都很好地适用于紧凑组群和多重精值的情况,在目标精度问题的背景下。Alogorithm I基于雷利商数和作为精度问题特征的微量成份原则。Algorithm I提供的误差估计公式很容易计算,并适用于Rayledge 商数信息有限的问题。Agorithm II作为Davis-Kahan方法的延伸,利用了差异操作者的双重配方以及 Prager-Synge 技术,并大大提高了估计的准确性,特别是精度的精度。矩阵和Laplace操作者在同源和非同源域上的精度问题数字示例说明了拟议算法的效率。