Model-based offline reinforcement learning (MORL) aims to learn a policy by exploiting a dynamics model derived from an existing dataset. Applying conservative quantification to the dynamics model, most existing works on MORL generate trajectories that approximate the real data distribution to facilitate policy learning by using current information (e.g., the state and action at time step $t$). However, these works neglect the impact of historical information on environmental dynamics, leading to the generation of unreliable trajectories that may not align with the real data distribution. In this paper, we propose a new MORL algorithm \textbf{R}eliability-guaranteed \textbf{T}ransformer (RT), which can eliminate unreliable trajectories by calculating the cumulative reliability of the generated trajectory (i.e., using a weighted variational distance away from the real data). Moreover, by sampling candidate actions with high rewards, RT can efficiently generate high-return trajectories from the existing offline data. We theoretically prove the performance guarantees of RT in policy learning, and empirically demonstrate its effectiveness against state-of-the-art model-based methods on several benchmark tasks.
翻译:暂无翻译