We propose a deep signature/log-signature FBSDE algorithm to solve forward-backward stochastic differential equations (FBSDEs) with state and path dependent features. By incorporating the deep signature/log-signature transformation into the recurrent neural network (RNN) model, our algorithm shortens the training time, improves the accuracy, and extends the time horizon comparing to methods in the existing literature. Moreover, our algorithms can be applied to a wide range of applications such as state and path dependent option pricing involving high-frequency data, model ambiguity, and stochastic games, which are linked to parabolic partial differential equations (PDEs), and path-dependent PDEs (PPDEs). Lastly, we also derive the convergence analysis of the deep signature/log-signature FBSDE algorithm.
翻译:我们提出一个深层次的签名/记录签名FBSDE算法,以解决具有状态和路径依赖特征的前向后随机差异方程式(FBSDEs)问题。通过将深度签名/记录签名转换纳入经常性神经网络模型,我们的算法缩短了培训时间,提高了准确性,并扩大了与现有文献方法相比的时间范围。此外,我们的算法可以应用于一系列广泛的应用,例如涉及高频数据、模型模糊性和随机游戏的状态和路径依赖性选项定价,这些都与参数部分差异方程式(PDEs)和路径依赖性PDEs(PPDEs)相关。 最后,我们还对深度签名/记录FBSDE算法进行了趋同分析。