Left truncated and right censored data are encountered frequently in insurance loss data due to deductibles and policy limits. Risk estimation is an important task in insurance as it is a necessary step for determining premiums under various policy terms. Spectral risk measures are inherently coherent and have the benefit of connecting the risk measure to the user's risk aversion. In this paper we study the estimation of spectral risk measure based on left truncated and right censored data. We propose a non parametric estimator of spectral risk measure using the product limit estimator and establish the asymptotic normality for our proposed estimator. We also develop an Edgeworth expansion of our proposed estimator. The bootstrap is employed to approximate the distribution of our proposed estimator and shown to be second order ``accurate''. Monte Carlo studies are conducted to compare the proposed spectral risk measure estimator with the existing parametric and non parametric estimators for left truncated and right censored data. Based on our simulation study we estimate the exponential spectral risk measure for three data sets viz; Norwegian fire claims data set, Spain automobile insurance claims and French marine losses.
翻译:暂无翻译