To alleviate the problem of structured databases' limited coverage, recent task-oriented dialogue systems incorporate external unstructured knowledge to guide the generation of system responses. However, these usually use word or sentence level similarities to detect the relevant knowledge context, which only partially capture the topical level relevance. In this paper, we examine how to better integrate topical information in knowledge grounded task-oriented dialogue and propose ``Topic-Aware Response Generation'' (TARG), an end-to-end response generation model. TARG incorporates multiple topic-aware attention mechanisms to derive the importance weighting scheme over dialogue utterances and external knowledge sources towards a better understanding of the dialogue history. Experimental results indicate that TARG achieves state-of-the-art performance in knowledge selection and response generation, outperforming previous state-of-the-art by 3.2, 3.6, and 4.2 points in EM, F1 and BLEU-4 respectively on Doc2Dial, and performing comparably with previous work on DSTC9; both being knowledge-grounded task-oriented dialogue datasets.
翻译:为了减轻结构化数据库覆盖面有限的问题,最近以任务为导向的对话系统纳入了外部非结构化知识,以指导系统反应的生成;然而,这些系统通常使用文字或句级的相似性来发现相关知识环境,仅部分地反映了专题层面的相关性;在本文件中,我们研究如何更好地将专题信息纳入基于知识的基于任务的对话,并提议一个端对端反应生成模式“TARG”,即端对端反应模式“Topic-Aware Response General”(TARG) 。TARG包含多个专题意识关注机制,以获得对对话言论和外部知识来源的重要性加权机制,从而更好地了解对话历史。实验结果显示,TRG在知识选择和反应生成方面取得了最新业绩,在文件2DIal上分别表现在EM、F1和BLEU-4中的成绩超过了以往水平,在文件2DSTC9上与先前的工作相匹配;两者都是以知识为基础的任务性对话数据集。