Text-based dialogues are now widely used to solve real-world problems. In cases where solution strategies are already known, they can sometimes be codified into workflows and used to guide humans or artificial agents through the task of helping clients. We introduce a new problem formulation that we call Workflow Discovery (WD) in which we are interested in the situation where a formal workflow may not yet exist. Still, we wish to discover the set of actions that have been taken to resolve a particular problem. We also examine a sequence-to-sequence (Seq2Seq) approach for this novel task. We present experiments where we extract workflows from dialogues in the Action-Based Conversations Dataset (ABCD). Since the ABCD dialogues follow known workflows to guide agents, we can evaluate our ability to extract such workflows using ground truth sequences of actions. We propose and evaluate an approach that conditions models on the set of possible actions, and we show that using this strategy, we can improve WD performance. Our conditioning approach also improves zero-shot and few-shot WD performance when transferring learned models to unseen domains within and across datasets. Further, on ABCD a modified variant of our Seq2Seq method achieves state-of-the-art performance on related but different problems of Action State Tracking (AST) and Cascading Dialogue Success (CDS) across many evaluation metrics.
翻译:现在,基于文本的对话被广泛用于解决现实世界的问题。在已经知道解决方案战略的情况下,有时可以将其编纂成工作流程,并通过帮助客户的任务指导人或人工代理。我们引入了我们称之为WD的新的问题配置,我们称之为WD,我们对此感兴趣的是正式工作流程可能尚不存在的情况。我们仍然希望发现为解决特定问题而采取的一系列行动。我们还检查了这一新任务的顺序到顺序(Seq2Seqeq)方法。我们展示了实验,我们从基于行动的对话数据集(ABCD)中提取工作流程,指导人或人工代理。由于ABCD对话遵循已知的工作流程来指导代理,我们可以评估我们利用实地真相行动序列来获取这些工作流程的能力。我们提出并评价一套可能行动的条件模式的方法,并且我们表明,利用这一战略,我们能够改进WD的业绩。我们的调节方法还改进了WD的零光和几张业绩。我们从基于基于基于基于行动的无线和跨数据轨迹的模型中提取的工作流程。(ACD-A-S-A-A-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CST-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S-S-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C