Nonlinear differential equations (DEs) are used in a wide range of scientific problems to model complex dynamic systems. The differential equations often contain unknown parameters that are of scientific interest, which have to be estimated from noisy measurements of the dynamic system. Generally, there is no closed-form solution for nonlinear DEs, and the likelihood surface for the parameter of interest is multi-modal and very sensitive to different parameter values. We propose a Bayesian framework for nonlinear DE systems. A flexible nonparametric function is used to represent the dynamic process such that expensive numerical solvers can be avoided. A sequential Monte Carlo algorithm in the annealing framework is proposed to conduct Bayesian inference for parameters in DEs. In our numerical experiments, we use examples of ordinary differential equations and delay differential equations to demonstrate the effectiveness of the proposed algorithm. We developed an R package that is available at \url{https://github.com/shijiaw/smcDE}.
翻译:非线性差异方程式(DEs)用于一系列广泛的科学问题,以模拟复杂的动态系统。差异方程式通常含有科学上感兴趣的未知参数,这些参数必须从动态系统的噪音测量中估算出来。一般而言,非线性DEs没有封闭式的解决方案,而相关参数的可能表面是多式的,对不同的参数值非常敏感。我们为非线性DE系统提出了一个巴伊西亚框架。我们使用一个灵活的非参数函数函数来代表动态过程,这样就可以避免昂贵的数字解答器。在肛门框架中,建议对DEs参数进行连续的蒙特卡洛算法。在我们的数字实验中,我们使用普通差异方程式和延迟差异方程式的例子来证明拟议算法的有效性。我们开发了一个R包,可在\url{https://github.com/shijiaw/smcDE}查阅。