This work develops a class of probabilistic algorithms for the numerical solution of nonlinear, time-dependent partial differential equations (PDEs). Current state-of-the-art PDE solvers treat the space- and time-dimensions separately, serially, and with black-box algorithms, which obscures the interactions between spatial and temporal approximation errors and misguides the quantification of the overall error. To fix this issue, we introduce a probabilistic version of a technique called method of lines. The proposed algorithm begins with a Gaussian process interpretation of finite difference methods, which then interacts naturally with filtering-based probabilistic ordinary differential equation (ODE) solvers because they share a common language: Bayesian inference. Joint quantification of space- and time-uncertainty becomes possible without losing the performance benefits of well-tuned ODE solvers. Thereby, we extend the toolbox of probabilistic programs for differential equation simulation to PDEs.
翻译:这项工作为非线性、 取决于时间的局部偏差方程式( PDEs) 的数字解决方案开发了一种概率算法。 当前最先进的 PDE 解算器将空间和时间分解分别、 序列和黑盒算法分别处理, 模糊了空间和时间近似误差之间的相互作用, 并错误引导了总体误差的量化 。 为了解决这个问题, 我们引入了一个称为线条法的技术的概率化版本 。 提议的算法首先从对有限差法的高斯进程解释开始, 然后与基于过滤的概率性普通差别方程式( ODE) 解算法( ODE) 进行自然互动, 因为他们使用共同语言 : 巴伊西亚 误判 。 联合计算空间和时间不确定性是可能的, 同时又不丧失调得力的 ODE 解算器的性能效益 。 因此, 我们把用于差异方程式模拟的概率化程序工具箱扩大到 PDEs 。