Ordinary differential equation (ODE) is an important tool to study the dynamics of a system of biological and physical processes. A central question in ODE modeling is to infer the significance of individual regulatory effect of one signal variable on another. However, building confidence band for ODE with unknown regulatory relations is challenging, and it remains largely an open question. In this article, we construct post-regularization confidence band for individual regulatory function in ODE with unknown functionals and noisy data observations. Our proposal is the first of its kind, and is built on two novel ingredients. The first is a new localized kernel learning approach that combines reproducing kernel learning with local Taylor approximation, and the second is a new de-biasing method that tackles infinite-dimensional functionals and additional measurement errors. We show that the constructed confidence band has the desired asymptotic coverage probability, and the recovered regulatory network approaches the truth with probability tending to one. We establish the theoretical properties when the number of variables in the system can be either smaller or larger than the number of sampling time points, and we study the regime-switching phenomenon. We demonstrate the efficacy of the proposed method through both simulations and illustrations with two data applications.


翻译:普通普通方程式 (OD) 是研究生物和物理过程系统动态的重要工具 。 OD 模型的一个中心问题是推断一个信号变量对另一个信号变量的个别监管效应的意义。 但是,为监管关系不明的 ODE 建立信任带是一项挑战,它在很大程度上仍然是一个尚未解决的问题。 在本篇文章中,我们为具有未知功能和数据观测噪音的ODE 中的个人监管功能建立常规后信任带。我们的提议是同类的首个,并且建立在两个新颖的成分上。第一个是新的局部内核学习方法,将复制内核学习与本地泰勒近似结合起来,第二个是处理无限功能和额外测量错误的新的去偏移方法。我们通过模拟和两个应用图示,展示拟议方法的功效。我们通过模拟和两个应用图示,以模拟和两个图解两种图解两种图解,我们确定了系统变量数目小于或大于抽样时间点时的理论属性。

0
下载
关闭预览

相关内容

【经典书】机器学习统计学,476页pdf
专知会员服务
122+阅读 · 2021年7月19日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
9+阅读 · 2021年4月8日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员