In this contribution we propose reduced order methods to fast and reliably solve parametrized optimal control problems governed by time dependent nonlinear partial differential equations. Our goal is to provide a tool to deal with the time evolution of several nonlinear optimality systems in many-query context, where a system must be analysed for various physical and geometrical features. Optimal control can be used in order to fill the gap between collected data and mathematical model and it is usually related to very time consuming activities: inverse problems, statistics, etc. Standard discretization techniques may lead to unbearable simulations for real applications. We aim at showing how reduced order modelling can solve this issue. We rely on a space-time POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space in a fast way for several parametric instances. The proposed algorithm is validated with a numerical test based on environmental sciences: a reduced optimal control problem governed by viscous Shallow Waters Equations parametrized not only in the physics features, but also in the geometrical ones. We will show how the reduced model can be useful in order to recover desired velocity and height profiles more rapidly with respect to the standard simulation, not losing accuracy.
翻译:在这一贡献中,我们提出减少订单的方法,以快速和可靠地解决由时间依赖的非线性部分偏差方程式所决定的、以时间依赖的非线性最佳控制问题。我们的目标是提供一个工具,处理许多冰河环境中若干非线性最佳系统的时间演变问题,必须对各种物理和几何特征进行系统分析。最佳控制可用于填补所收集的数据与数学模型之间的差距,通常与耗时非常高的活动有关:反向问题、统计等。标准离散技术可能导致无法忍受的模拟,用于实际应用。我们的目标是展示减少的秩序建模如何解决这个问题。我们依靠空间-时间POD-Galerkin的减少,以便在低天性减少的空间快速解决最佳控制问题,以若干次参数为例。拟议的算法得到基于环境科学的数字测试的验证:减少由浅水反射量调节的最佳控制问题,不仅在物理特性方面,而且在几何几何测度方面。我们将显示降低的模型如何有助于快速地恢复预期的高度和高度。我们将显示降低模型的精确度,而不是为了迅速恢复预期的高度。