In this contribution we propose reduced order methods to fast and reliably solve parametrized optimal control problems governed by time dependent nonlinear partial differential equations. Our goal is to provide a tool to deal with the time evolution of several nonlinear optimality systems in many-query context, where a system must be analysed for various physical and geometrical features. Optimal control can be used in order to fill the gap between collected data and mathematical model and it is usually related to very time consuming activities: inverse problems, statistics, etc. Standard discretization techniques may lead to unbearable simulations for real applications. We aim at showing how reduced order modelling can solve this issue. We rely on a space-time POD-Galerkin reduction in order to solve the optimal control problem in a low dimensional reduced space in a fast way for several parametric instances. The proposed algorithm is validated with a numerical test based on environmental sciences: a reduced optimal control problem governed by viscous Shallow Waters Equations parametrized not only in the physics features, but also in the geometrical ones. We will show how the reduced model can be useful in order to recover desired velocity and height profiles more rapidly with respect to the standard simulation, not losing accuracy.


翻译:在这一贡献中,我们提出减少订单的方法,以快速和可靠地解决由时间依赖的非线性部分偏差方程式所决定的、以时间依赖的非线性最佳控制问题。我们的目标是提供一个工具,处理许多冰河环境中若干非线性最佳系统的时间演变问题,必须对各种物理和几何特征进行系统分析。最佳控制可用于填补所收集的数据与数学模型之间的差距,通常与耗时非常高的活动有关:反向问题、统计等。标准离散技术可能导致无法忍受的模拟,用于实际应用。我们的目标是展示减少的秩序建模如何解决这个问题。我们依靠空间-时间POD-Galerkin的减少,以便在低天性减少的空间快速解决最佳控制问题,以若干次参数为例。拟议的算法得到基于环境科学的数字测试的验证:减少由浅水反射量调节的最佳控制问题,不仅在物理特性方面,而且在几何几何测度方面。我们将显示降低的模型如何有助于快速地恢复预期的高度和高度。我们将显示降低模型的精确度,而不是为了迅速恢复预期的高度。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员