In the first part of this work, we develop a novel scheme for solving nonparametric regression problems. That is the approximation of possibly low regular and noised functions from the knowledge of their approximate values given at some random points. Our proposed scheme is based on the use of the pseudo-inverse of a random projection matrix, combined with some specific properties of the Jacobi polynomials system, as well as some properties of positive definite random matrices. This scheme has the advantages to be stable, robust, accurate and fairly fast in terms of execution time. In particular, we provide an $L_2$ as well as an $L_2-$risk errors of our proposed nonparametric regression estimator. Moreover and unlike most of the existing nonparametric regression estimators, no extra regularization step is required by our proposed estimator. Although, this estimator is initially designed to work with random sampling set of uni-variate i.i.d. random variables following a Beta distribution, we show that it is still works for a wide range of sampling distribution laws. Moreover, we briefly describe how our estimator can be adapted in order to handle the multivariate case of random sampling sets. In the second part of this work, we extend the random pseudo-inverse scheme technique to build a stable and accurate estimator for solving linear functional regression (LFR) problems. A dyadic decomposition approach is used to construct this last stable estimator for the LFR problem. Alaso, we give an $L_2-$risk error of our proposed LFR estimator. Finally, the performance of the two proposed estimators are illustrated by various numerical simulations. In particular, a real dataset is used to illustrate the performance of our nonparametric regression estimator.


翻译:在这项工作的第一部分, 我们开发了一个新颖的方案来解决非参数回归问题。 特别是, 我们提供了可能低的常规和有节制函数的近似值, 可能低的常规和有节制函数来自某些随机点给出的近似值。 我们提议的方案的基础是使用随机投影矩阵的假反侧, 加上Jacobi 多元图谱系统的某些特性, 以及一些肯定的随机矩阵的特性。 这个方案的好处在于执行时间稳定、 稳健、 准确和相当快。 特别是, 我们提供了一种可能低的常规和有节制函数函数的近似值函数, 以及我们拟议的非参数回归度缩影估测值的近似值错误。 此外, 此外, 与大多数现有的非参数回归缩影缩影仪不同的是, 我们提议的正态缩略图的精确度的精确度, 我们的直径直度运算法的精确度, 我们的直径直度模型是用来处理一个随机的直径直径方的数学模型。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
开源TF-Ranking可扩展库,支持多种排序学习
机器学习算法与Python学习
3+阅读 · 2018年12月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
开源TF-Ranking可扩展库,支持多种排序学习
机器学习算法与Python学习
3+阅读 · 2018年12月20日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员