Restless Multi-Armed Bandits (RMABs) have been successfully applied to resource allocation problems in a variety of settings, including public health. With the rapid development of powerful large language models (LLMs), they are increasingly used to design reward functions to better match human preferences. Recent work has shown that LLMs can be used to tailor automated allocation decisions to community needs using language prompts. However, this has been studied primarily for English prompts and with a focus on task performance only. This can be an issue since grassroots workers, especially in developing countries like India, prefer to work in local languages, some of which are low-resource. Further, given the nature of the problem, biases along population groups unintended by the user are also undesirable. In this work, we study the effects on both task performance and fairness when the DLM algorithm, a recent work on using LLMs to design reward functions for RMABs, is prompted with non-English language commands. Specifically, we run the model on a synthetic environment for various prompts translated into multiple languages. The prompts themselves vary in complexity. Our results show that the LLM-proposed reward functions are significantly better when prompted in English compared to other languages. We also find that the exact phrasing of the prompt impacts task performance. Further, as prompt complexity increases, performance worsens for all languages; however, it is more robust with English prompts than with lower-resource languages. On the fairness side, we find that low-resource languages and more complex prompts are both highly likely to create unfairness along unintended dimensions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员