The rapid spread of COVID-19 cases in recent months has strained hospital resources, making rapid and accurate triage of patients presenting to emergency departments a necessity. Machine learning techniques using clinical data such as chest X-rays have been used to predict which patients are most at risk of deterioration. We consider the task of predicting two types of patient deterioration based on chest X-rays: adverse event deterioration (i.e., transfer to the intensive care unit, intubation, or mortality) and increased oxygen requirements beyond 6 L per day. Due to the relative scarcity of COVID-19 patient data, existing solutions leverage supervised pretraining on related non-COVID images, but this is limited by the differences between the pretraining data and the target COVID-19 patient data. In this paper, we use self-supervised learning based on the momentum contrast (MoCo) method in the pretraining phase to learn more general image representations to use for downstream tasks. We present three results. The first is deterioration prediction from a single image, where our model achieves an area under receiver operating characteristic curve (AUC) of 0.742 for predicting an adverse event within 96 hours (compared to 0.703 with supervised pretraining) and an AUC of 0.765 for predicting oxygen requirements greater than 6 L a day at 24 hours (compared to 0.749 with supervised pretraining). We then propose a new transformer-based architecture that can process sequences of multiple images for prediction and show that this model can achieve an improved AUC of 0.786 for predicting an adverse event at 96 hours and an AUC of 0.848 for predicting mortalities at 96 hours. A small pilot clinical study suggested that the prediction accuracy of our model is comparable to that of experienced radiologists analyzing the same information.
翻译:近几个月来,COVID-19病例的迅速扩散使医院资源紧张,使得向急诊部门提交的病人快速和准确的分类成为必要的。使用胸前X光等临床数据来预测哪些病人最有恶化风险的机器学习技术被用来预测哪些病人最有可能恶化。我们考虑根据胸前X光预测两种类型的病人恶化情况的任务:不利事件恶化(即转移到密集护理单位、插管或死亡率)以及每天超过6升的氧气需求增加。由于COVID-19病人数据相对稀缺,现有解决方案利用了对相关非COVID图像的监督前训练,但是由于培训前数据与COVID-19病人目标数据之间的差异而受到限制。我们认为,我们利用培训前阶段基于势头对比(MoCo)方法预测两种类型的病人恶化情况:不利事件恶化(即转移到密集护理单位、插管或死亡率)以及氧气需求增加超过每天6升升升的频率需求。我们模型可以预测一个在接收者特征曲线(AUC)下运行一个区域(AUC) 0.742的多位预测过程,在96小时内预测一个比0.740天的0.8的模型。我们预测一个比A比A的0.188的模型显示一个比0.8的0.10A的模型,显示一个比0.16A的模型,显示一个比0.15的0.10的模型,显示一个比一个比一个40。