Real-world data collected from multiple domains can have multiple, distinct distribution shifts over multiple attributes. However, state-of-the art advances in domain generalization (DG) algorithms focus only on specific shifts over a single attribute. We introduce datasets with multi-attribute distribution shifts and find that existing DG algorithms fail to generalize. To explain this, we use causal graphs to characterize the different types of shifts based on the relationship between spurious attributes and the classification label. Each multi-attribute causal graph entails different constraints over observed variables, and therefore any algorithm based on a single, fixed independence constraint cannot work well across all shifts. We present Causally Adaptive Constraint Minimization (CACM), a new algorithm for identifying the correct independence constraints for regularization. Results on fully synthetic, MNIST and small NORB datasets, covering binary and multi-valued attributes and labels, confirm our theoretical claim: correct independence constraints lead to the highest accuracy on unseen domains whereas incorrect constraints fail to do so. Our results demonstrate the importance of modeling the causal relationships inherent in the data-generating process: in many cases, it is impossible to know the correct regularization constraints without this information.
翻译:从多个域收集的现实世界数据可能会在多个属性上发生多重、不同的分布变化。 但是, 域通用( DG) 算法的最新进步只关注单个属性的具体变化。 我们引入了多属性分布变化数据集, 发现现有的 DG 算法没有概括化。 为了解释这一点, 我们使用因果图表来描述基于虚假属性和分类标签之间关系的不同类型的变化。 每个多属性因果图形都包含对所观察到变量的不同限制, 因此基于单一固定独立限制的算法无法在所有变化中有效运行。 我们展示了一种用于确定正规化的正确独立性限制的新算法( CACM ) 。 完全合成、 MNIST 和 小NORB 数据集的结果, 涵盖了二进制和多值属性和标签, 证实了我们的理论主张: 正确的独立性制约导致隐蔽区域的最高准确性, 而错误的限制则无法做到这一点。 我们的结果表明, 建模数据生成过程中内在的因果关系非常重要 。 在很多情况下, 我们无法知道正确的正规化限制, 。