Hardware-based Malware Detectors (HMDs) have shown promise in detecting malicious workloads. However, the current HMDs focus solely on the CPU core of a System-on-Chip (SoC) and, therefore, do not exploit the full potential of the hardware telemetry. In this paper, we propose XMD, an HMD that uses an expansive set of telemetry channels extracted from the different subsystems of SoC. XMD exploits the thread-level profiling power of the CPU-core telemetry, and the global profiling power of non-core telemetry channels, to achieve significantly better detection performance than currently used Hardware Performance Counter (HPC) based detectors. We leverage the concept of manifold hypothesis to analytically prove the performance gains observed in XMD. We train and evaluate XMD using hardware telemetries collected from 904 benign applications and 1205 malware samples on a commodity Android Operating System (OS)-based mobile device. XMD improves over currently used HPC-based detectors by 32.91% for the in-distribution test data. XMD achieves the best detection performance of 86.54% with a false positive rate of 2.9%, compared to the detection rate of 80\%, offered by the best performing software-based Anti-Virus(AV) on VirusTotal, on the same set of malware samples.


翻译:在本文中,我们提议XMD,即使用从SoC各子系统抽取的一套宽广的遥测频道。XMD利用CPU核心遥测和非核心遥测频道的线级剖析能力,利用目前使用的HPC核心遥测数据的32.91%对分配测试数据进行比目前使用的HPC基于HPC的检测能力更好的全球剖析。我们利用多种假设的概念分析证明XMD所观测的绩效收益。我们利用从904良性应用中收集的硬件遥测和从商品和机器人操作系统(OS)各不同子系统(OS)采集的1205个软件样本,对XMD进行训练和评价。XMD利用目前使用的HPC核心遥测仪和非核心遥测频道的线级剖析能力,实现大大优于目前使用的硬件性能。XMDMD实现了最佳的检测性能,以86.54%的MAVS样本为正率率,以80.54%的MAV样本为正比。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员