It is confirmed in this work that the graph isomorphism can be tested in polynomial time, which resolves a longstanding problem in the theory of computation. The contributions are in three phases as follows. 1. A description graph $\tilde{A}$ to a given graph $A$ is introduced so that labels to vertices and edges of $\tilde{A}$ indicate the identical or different amounts of walks of any sort in any length between vertices in $A$. Three processes are then developed to obtain description graphs. They reveal relations among matrix power, spectral decomposition and adjoint matrices, which is of independent interest. 2. We show that the stabilization of description graphs can be implemented via matrix-power stabilization, a new approach to distinguish vertices and edges to graphs. The approach is proven to be equivalent in the partition of vertices to Weisfeiler-Lehman (WL for short) process. The specific Square-and-Substitution (SaS) process is more succinct than WL process. The vertex partitions to our stable graphs are proven to be \emph{strongly} equitable partitions, which is important in the proofs of our main conclusion. Some properties on stable graphs are also explored. 3. A class of graphs named binding graphs is proposed and proven to be graph-isomorphism complete. The vertex partition to the stable graph of a binding graph is the automorphism partition, which allows us to confirm graph-isomorphism problem is in complexity class $\mathtt{P}$. Since the binding graph to a graph is so simple in construction, our approach can be readily applied in practice. Some examples are supplied as illustrations to the contexts, and a brief suggestion to implementation of SaS process is also given in the appendix.
翻译:本文证实, 图形是形态化的, 可以用多面性时间来测试 。 这样可以解决计算理论中长期存在的问题 。 贡献分为以下三个阶段 。 1. 引入给给定图形$A$ 的描述图形$\ tilde{ A} $A$ $A$ 美元 标签, 以区分顶端和边緣 $\ tilde{ A} 美元 。 这个方法在任何长度的顶端之间都表示相同或不同的行走量 $A$ 。 然后开发三个进程以获取描述图 。 它们显示矩阵动力、 光谱分解和 联合矩阵之间的关系, 它们是独立感兴趣的 。 我们显示, 描述图表的稳定性图形可以通过矩阵稳定化来执行 。 在稳定化的图表中, 稳定化的平面部分会被证实 。 在稳定化的平面图中, 稳定的平面面部会被证实为 。