We consider the problem of learning a Gaussian graphical model in the case where the observations come from two dependent groups sharing the same variables. We focus on a family of coloured Gaussian graphical models specifically suited for the paired data problem. Commonly, graphical models are ordered by the submodel relationship so that the search space is a lattice, called the model inclusion lattice. We introduce a novel order between models, named the twin order. We show that, embedded with this order, the model space is a lattice that, unlike the model inclusion lattice, is distributive. Furthermore, we provide the relevant rules for the computation of the neighbours of a model. The latter are more efficient than the same operations in the model inclusion lattice, and are then exploited to achieve a more efficient exploration of the search space. These results can be applied to improve the efficiency of both greedy and Bayesian model search procedures. Here we implement a stepwise backward elimination procedure and evaluate its performance by means of simulations. Finally, the procedure is applied to learn a brain network from fMRI data where the two groups correspond to the left and right hemispheres, respectively.
翻译:我们考虑的是,当观测来自两个有共同变量的依附群体时,如何学习高斯图形模型的问题。 我们注重于一个有色高斯图形模型的大家庭,这些模型特别适合配对数据问题。 通常, 图形模型是由子模型关系订购的, 以便搜索空间是一个网格, 称为“ 网格模型” 。 我们在模型中引入了一种新颖的顺序, 名为“ 双序列 ” 。 我们显示, 根据这个顺序, 模型空间是一个网格, 与模型的包容网格不同, 是分布式的。 此外, 我们为模型邻居的计算提供了相关规则。 后者比模型的包容网格中相同的操作效率更高, 然后被利用来更有效地探索搜索空间。 这些结果可以用来提高贪婪和巴耶西亚模型搜索程序的效率。 我们在这里执行一个渐进式的后退程序, 并通过模拟来评估其性能。 最后, 程序用于从两个组分别与左半球和右半球对应的FMRI数据中学习大脑网络。</s>