Small area estimation methods are used in surveys, where sample sizes are too small to get reliable direct estimates of parameters in some population domains. We consider design-based linear combinations of direct and synthetic estimators and propose a two-step procedure to approach the optimal combination. We construct the mean square error estimator suitable for this and any other linear composition that estimates the optimal one. We apply the theory to two design-based compositions analogous to the empirical best linear unbiased predictors (EBLUPs) based on the basic area- and unit-level models. The simulation study shows that the new methods are efficient compared to estimation using EBLUP.
翻译:在调查中使用了小面积估计方法,因为抽样规模太小,无法对某些人口领域的参数进行可靠的直接估计。我们考虑直接和合成估计器的基于设计的线性组合,并提议一个两步程序来接近最佳组合。我们构建适合这一组合的平均平方误差估计器,以及任何其他估计最佳组合的线性估计器。我们将该理论应用于两种基于设计的组成,类似于基于基本面积和单位级模型的实验性最佳线性不偏向预测器。模拟研究表明,新方法与使用EBLUP的估算相比是有效的。