Reinforcement learning is a promising approach to learning robotics controllers. It has recently been shown that algorithms based on finite-difference estimates of the policy gradient are competitive with algorithms based on the policy gradient theorem. We propose a theoretical framework for understanding this phenomenon. Our key insight is that many dynamical systems (especially those of interest in robotics control tasks) are nearly deterministic -- i.e., they can be modeled as a deterministic system with a small stochastic perturbation. We show that for such systems, finite-difference estimates of the policy gradient can have substantially lower variance than estimates based on the policy gradient theorem. Finally, we empirically evaluate our insights in an experiment on the inverted pendulum.


翻译:强化学习是学习机器人控制器的一个很有希望的方法。 最近已经表明,基于政策梯度的有限差异估计值的算法与基于政策梯度理论的算法具有竞争力。 我们提出了一个理解这一现象的理论框架。我们的主要见解是,许多动态系统(特别是那些对机器人控制任务感兴趣的系统)几乎具有确定性 -- -- 即它们可以建模为具有小小的随机扰动作用的确定性系统。我们表明,对于这类系统,政策梯度的有限差异估计值可能大大低于基于政策梯度理论的估算值。最后,我们从经验上评估了我们关于垂直弯曲实验的洞察力。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员