In the problem of active sequential hypothesis testing (ASHT), a learner seeks to identify the true hypothesis from among a known set of hypotheses. The learner is given a set of actions and knows the random distribution of the outcome of any action under any true hypothesis. Given a target error $\delta>0$, the goal is to sequentially select the fewest number of actions so as to identify the true hypothesis with probability at least $1 - \delta$. Motivated by applications in which the number of hypotheses or actions is massive (e.g., genomics-based cancer detection), we propose efficient (greedy, in fact) algorithms and provide the first approximation guarantees for ASHT, under two types of adaptivity. Both of our guarantees are independent of the number of actions and logarithmic in the number of hypotheses. We numerically evaluate the performance of our algorithms using both synthetic and real-world DNA mutation data, demonstrating that our algorithms outperform previously proposed heuristic policies by large margins.


翻译:在积极的连续假设测试(ASHT)问题中,学习者试图从已知的一系列假设中找出真实的假设。学习者得到一套行动,并知道在任何真实假设下任何行动的结果的随机分布。考虑到一个目标错误 $\delta>0$,目标是按顺序选择最少量的行动,以便用概率至少1美元 -\delta$来识别真实的假设。受假设或行动的数量巨大的应用(例如基于基因组的癌症检测)的驱动,我们提出高效的算法(事实上是基因组的),并在两种适应性下为ASHT提供第一种近似保证。我们两种保证都独立于行动的数量和假设数的对数。我们用合成和现实世界DNA突变数据对算法的性能进行数字评估,表明我们的算法超越了先前提议的大边缘的超值政策。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
59+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月26日
VIP会员
相关VIP内容
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
49+阅读 · 2021年11月15日
【2020新书】C++20 特性 第二版,A Problem-Solution Approach
专知会员服务
59+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员