We discuss the continuum limit of discrete Dirac operators on the square lattice in $\mathbb R^2$ as the mesh size tends to zero. To this end, we propose the most natural and simplest embedding of $\ell^2(\mathbb Z_h^d)$ into $L^2(\mathbb R^d)$, which enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space $L^2(\mathbb R^2)^2$. In particular, we prove that the discrete Dirac operators converge to the continuum Dirac operators in the strong resolvent sense. Potentials are assumed to be bounded and uniformly continuous functions on $\mathbb R^2$ and allowed to be complex matrix-valued. We also prove that the discrete Dirac operators do not converge to the continuum Dirac operators in the norm resolvent sense. This is closely related to the observation that the Liouville theorem does not hold in discrete complex analysis.
翻译:我们讨论平方格上离散的Dirac操作员的连续限制值, 以$mathbb R $2$计算, 因为网状尺寸一般为零。 为此, 我们提议将最自然和最简单的 $\ 2(\\ mathb ⁇ h ⁇ d) 嵌入$L 2(\\ mathbb R ⁇ d) 美元中, 使我们能够比较离散的 Dirac 操作员与同一 Hilbert 空间的连续 Dirac 操作员的连续操作员的连续限制值 $L2 (\\ mathb R ⁇ 2) 。 特别是, 我们证明离散的 Dirac 操作员以强烈的稳健定感将聚集到连续的 Dirac 操作员的连续操作员中。 假设在$\ mathb R $ 2$ 上具有约束性和统一的持续功能, 并允许使用复杂的矩阵价值。 我们还证明离散的 Dirac 操作员没有在标准解定感中与连续的 Dirac 操作员的合并。 这与Louvill 的观察关系密切。