We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a minimum degree of at least $n/2$, where $n$ denotes the number of vertices in the graph. The classical theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial time in the classical centralized model. This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamiltonian cycle (as well as maximum matching) within $O(\log n)$ rounds under the promise that the input graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision and search variants of Hamiltonicity require $\tilde{\Omega}(n^2)$ rounds, as shown by Bachrach et al. [PODC'19]. In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad graphs [IPL'05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at least $n$, and in Rahman-Kaykobad graphs, the sum of the degrees of every pair of non-adjacent vertices plus their distance is at least $n+1$. We show how our algorithm for Dirac graphs can be adapted to work for these more general families of graphs.


翻译:我们研究在承诺下找到汉密尔顿周期的问题, 承诺输入图至少有最低度为 $/2 美元, 美元代表图中脊椎的数量。 Dirac 的古典理论指出, 这种图表( a. k. a. Dirac 图形) 是汉密尔顿式的, 即包含汉密尔顿周期 。 此外, 在传统中央模型中, 在 Dirac 图形中找到汉密尔顿周期, 可以在多元时完成。 本文展示了随机分布的 CONEST 算法, 在 $( h. p. ) 中找到一个汉密尔顿周期( 和最大匹配 ) 。 在承诺下, 输入图是 Dirac 的圆数( a. k. a. a. a. a. a. a. dirac. Dirac. Dirac 图表) 中, 汉密尔顿周期需要 $( n) 美元 。 。 此外, 如 Bachrachchch 和 al. 美元 中, 我们考虑在 Dirac 平面图中, 的平面图中, 平面图中, 平面图中, 的平面图和图显示这些平面的平面图的两平色平色平色平。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员