We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a minimum degree of at least $n/2$, where $n$ denotes the number of vertices in the graph. The classical theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial time in the classical centralized model. This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamiltonian cycle (as well as maximum matching) within $O(\log n)$ rounds under the promise that the input graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision and search variants of Hamiltonicity require $\tilde{\Omega}(n^2)$ rounds, as shown by Bachrach et al. [PODC'19]. In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad graphs [IPL'05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at least $n$, and in Rahman-Kaykobad graphs, the sum of the degrees of every pair of non-adjacent vertices plus their distance is at least $n+1$. We show how our algorithm for Dirac graphs can be adapted to work for these more general families of graphs.
翻译:我们研究在承诺下找到汉密尔顿周期的问题, 承诺输入图至少有最低度为 $/2 美元, 美元代表图中脊椎的数量。 Dirac 的古典理论指出, 这种图表( a. k. a. Dirac 图形) 是汉密尔顿式的, 即包含汉密尔顿周期 。 此外, 在传统中央模型中, 在 Dirac 图形中找到汉密尔顿周期, 可以在多元时完成。 本文展示了随机分布的 CONEST 算法, 在 $( h. p. ) 中找到一个汉密尔顿周期( 和最大匹配 ) 。 在承诺下, 输入图是 Dirac 的圆数( a. k. a. a. a. a. a. a. dirac. Dirac. Dirac 图表) 中, 汉密尔顿周期需要 $( n) 美元 。 。 此外, 如 Bachrachchch 和 al. 美元 中, 我们考虑在 Dirac 平面图中, 的平面图中, 平面图中, 平面图中, 的平面图和图显示这些平面的平面图的两平色平色平色平。