We give a thorough description of the asymptotic property of the maximum likelihood estimator (MLE) of the skewness parameter of a Skew Brownian Motion (SBM). Thanks to recent results on the Central Limit Theorem of the rate of convergence of estimators for the SBM, we prove a conjecture left open that the MLE has asymptotically a mixed normal distribution involving the local time with a rate of convergence of order $1/4$. We also give a series expansion of the MLE and study the asymptotic behavior of the score and its derivatives, as well as their variation with the skewness parameter. In particular, we exhibit a specific behavior when the SBM is actually a Brownian motion, and quantify the explosion of the coefficients of the expansion when the skewness parameter is close to $-1$ or $1$.
翻译:我们详尽地描述了Skew Brown 运动(SBM) 最可能估计参数(MLE) 的最大偏差参数(MLE) 的无症状属性。 由于最近关于SBM 估计参数汇合率的中央限制理论结果,我们证实一个空洞的推测,即MLE在本地时间的正常分布上是零星混杂的,汇合率为1/4美元。我们还对MLE进行一系列扩展,并研究得分及其衍生物的无症状行为,以及它们与Skewn 参数的差异。特别是,当SBM实际上是布朗运动时,我们展示了一种具体的行为,并量化了Skewn 参数接近1美元或1美元时扩张系数的爆炸。