Finite order Markov models are theoretically well-studied models for dependent discrete data. Despite their generality, application in empirical work when the order is large is rare. Practitioners avoid using higher order Markov models because (1) the number of parameters grow exponentially with the order and (2) the interpretation is often difficult. Mixture of transition distribution models (MTD) were introduced to overcome both limitations. MTD represent higher order Markov models as a convex mixture of single step Markov chains, reducing the number of parameters and increasing the interpretability. Nevertheless, in practice, estimation of MTD models with large orders are still limited because of curse of dimensionality and high algorithm complexity. Here, we prove that if only few lags are relevant we can consistently and efficiently recover the lags and estimate the transition probabilities of high-dimensional MTD models. The key innovation is a recursive procedure for the selection of the relevant lags of the model. Our results are based on (1) a new structural result of the MTD and (2) an improved martingale concentration inequality. We illustrate our method using simulations and a weather data.


翻译:Markov 模型在理论上是独立的离散数据模型。尽管这些模型具有一般性质,但在大量离散数据中应用的经验性工作是罕见的。从业者避免使用较高顺序的Markov模型,因为(1) 参数数随着顺序而成倍增长,(2) 解释往往很困难。为克服这两种限制,采用了过渡分配模型混合体(MTD)。MTD代表了较高顺序的Markov模型,作为单步马可夫链的螺旋混合物,减少了参数数量,增加了可解释性。然而,在实践上,对大订单的MTD模型的估计仍然有限,因为具有高度的维度和高度的算法复杂性。在这里,我们证明,如果只有很少的滞后点具有相关性,我们就能够持续和有效地恢复滞后,并且估计高维度MTD 模型的过渡概率。关键创新是选择模型相关滞后的循环程序。我们的结果基于(1) MTD 新的结构结果,(2) 改进马丁加勒的浓度不平等。我们用模拟和天气数据来说明我们的方法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员