The rising availability of commercial $360^\circ$ cameras that democratize indoor scanning, has increased the interest for novel applications, such as interior space re-design. Diminished Reality (DR) fulfills the requirement of such applications, to remove existing objects in the scene, essentially translating this to a counterfactual inpainting task. While recent advances in data-driven inpainting have shown significant progress in generating realistic samples, they are not constrained to produce results with reality mapped structures. To preserve the `reality' in indoor (re-)planning applications, the scene's structure preservation is crucial. To ensure structure-aware counterfactual inpainting, we propose a model that initially predicts the structure of an indoor scene and then uses it to guide the reconstruction of an empty -- background only -- representation of the same scene. We train and compare against other state-of-the-art methods on a version of the Structured3D dataset modified for DR, showing superior results in both quantitative metrics and qualitative results, but more interestingly, our approach exhibits a much faster convergence rate. Code and models are available at https://vcl3d.github.io/PanoDR/ .
翻译:使室内扫描民主化的商用360美元摄像头日益普及,提高了人们对室内空间重新设计等新应用的兴趣。 最小化现实(DR)满足了这些应用的要求, 去除现场现有物体, 基本上将之转化为反事实油漆任务。 虽然数据驱动的绘画最近的进展显示,在产生现实样本方面取得了显著进展, 但它们并不局限于用真实的绘图结构产生结果。 为了在室内(再)规划应用中保持“真实性”, 现场的结构保护至关重要。 为确保结构能对事实进行反油漆, 我们提出了一个模型, 最初预测室内场景的结构,然后用它来指导对同一场景的空 -- -- 背景 -- -- 的重建。 我们对为DR修改的结构3D数据集的版本进行了培训和比较,显示定量计量和定性结果的优异结果,但更有意思的是, 我们的方法展示了更快的趋同率。 代码和模型可在 https://Pclovcl3。 https/DRivo3。