Random sampling of graph partitions under constraints has become a popular tool for evaluating legislative redistricting plans. Analysts detect partisan gerrymandering by comparing a proposed redistricting plan with an ensemble of sampled alternative plans. For successful application, sampling methods must scale to large maps with many districts, incorporate realistic legal constraints, and accurately and efficiently sample from a selected target distribution. Unfortunately, most existing methods struggle in at least one of these areas. We present a new Sequential Monte Carlo (SMC) algorithm that generates a sample of redistricting plans converging to a realistic target distribution. Because it draws many plans in parallel, the SMC algorithm can efficiently explore the relevant space of redistricting plans better than the existing Markov chain Monte Carlo (MCMC) algorithms that generate plans sequentially. Our algorithm can simultaneously incorporate several constraints commonly imposed in real-world redistricting problems, including equal population, compactness, and preservation of administrative boundaries. We validate the accuracy of the proposed algorithm by using a small map where all redistricting plans can be enumerated. We then apply the SMC algorithm to evaluate the partisan implications of several maps submitted by relevant parties in a recent high-profile redistricting case in the state of Pennsylvania. We find that the proposed algorithm converges to the target distribution faster and with fewer samples than a state-of-the-art MCMC algorithm. Open-source software is available for implementing the proposed methodology.


翻译:分析员通过将拟议的重新划分计划与一系列抽样替代计划进行比较,发现有偏差。为了成功应用,抽样方法必须与许多地区的大地图进行比例化,纳入现实的法律限制,并准确和高效地从选定的目标分布中抽取样本。不幸的是,大多数现有方法至少在其中的一个地区挣扎。我们提出了一个新的序列式蒙特卡洛(SMC)算法,产生重新划分计划的样本,以便与现实的目标分布相融合。由于它同时绘制了许多计划,SMC算法可以有效地探索重新划分计划的有关空间,比现有的马尔科夫链-蒙特卡洛(MC)算法(Monte Carlo)算法(Conte Carlo(MC)算法)相继产生计划。我们的算法可以同时纳入在现实世界重新划分问题中通常设置的若干限制,包括人口平等、紧凑、保护行政边界。我们用一个小的地图来验证拟议的算法的准确性。我们随后运用SMC算法来评估新的重新划分计划,因为它同时绘制了许多计划。我们运用SMC的公开性算法来评估重新划分计划的有关空间计划所涉及的空间空间空间空间,比相关缔约方提出的数级算法更快。我们用最近提出的州级算法在比较中找到的州级图中,比较比较比较的州级算法,在比较地标的州级图中找到区划法在比较方法,以较快标法的标法的进度法的标法在比较方法在比较法中找到。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
详解PyTorch中的ModuleList和Sequential
极市平台
0+阅读 · 2022年1月28日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员