We consider an optimal shrinkage algorithm that depends on an effective rank estimation and imputation, coined optimal shrinkage with imputation and rank estimation (OSIR), for matrix denoising in the presence of high-dimensional noise with the separable covariance structure (colored and dependent noise). The algorithm does not depend on estimating separable covariance structure of the noise. On the theoretical side, we study the asymptotic behavior of outlier singular values and singular vectors and prove the delocalization of the non-outlier singular vectors of the associated random matrix with a convergence rate, and apply these results to analyze OSIR over different signal strengths and sizes of data matrices. On the application side, we carry out simulations to demonstrate the effectiveness of OSIR, and apply it to study the fetal electrocardiogram signal processing challenge and the two-dimensional random tomography problem.
翻译:我们认为一种最佳缩水算法,它取决于有效的等级估测和估算,通过估算和等级估测(OSIR)而产生最佳缩水,用于在具有可分离的共变结构(彩色和依赖性噪音)的高维噪音下进行矩阵拆卸。这种算法并不取决于对噪音的相分离共变结构的估计。在理论方面,我们研究外部单值和单矢量的无症状行为,并证明相关随机矩阵的非外部单向矢量与趋同率的异位化,并将这些结果用于分析OSIR对数据矩阵的不同信号强和大小。在应用方面,我们进行模拟,以展示OSIR的有效性,并应用它来研究胎儿心电图信号处理的挑战和二维随机断层图学问题。